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Abstract. Recently published excitation functions in proton-proton (pp) elastic scattering observables in
the laboratory energy range 0.5–2.5GeV provide an excellent data base to establish firm upper limits on
the elasticities ηel = Γel/Γtot of possible isovector resonant contributions to the nucleon-nucleon (NN)
system. Such contributions have been predicted to arise from dibaryonic states, with c.m. masses between
2.1–2.9GeV/c2, but have not been confirmed experimentally. A method to determine quantitatively the
maximum value of ηel compatible with experimental data is presented. We use energy-dependent phase
shift fits to the pp data base to model the non-resonant interaction. Based upon the differential cross-
section data measured by the EDDA Collaboration an unbiased statistical test is constructed to obtain
upper limits on ηel, that exclude larger values with a 99% confidence level. Results in the c.m. mass range
2.05–2.85GeV/c2 and total widths of 10–100MeV/c2 in the partial waves 1S0,

1D2,
3P0,

3P1, and
3F3 are

presented and discussed.

PACS. 25.40.Cm Elastic proton scattering – 13.75.Cs Nucleon-nucleon interactions (including antinucle-
ons, deuterons, etc.) – 14.20.Pt Dibaryons – 11.80.Et Partial-wave analysis

1 Introduction

Practically all established hadronic states can be ex-
plained at the quark level as bound states of either three
quarks (baryons) or quark-antiquark states (mesons).
With the advent of quantum chromo dynamics (QCD),
the by now accepted theory of the strong interaction, a
new degree of freedom—color— was introduced. The non-
observation of, for instance, single quarks or four quark
states can be explained, when color confinement is as-
sumed, restricting the color field to small volumes, such
that only color singlet states can be observed. However,
within the framework of QCD, other color singlet bound
states, made up by certain other number of quarks and
anti-quarks or by gluons, are not ruled out. Unfortunately,
due to the non-Abelian nature of QCD the coupling be-
tween quarks in the low-energy regime is strong, making
a rigorous calculation of low-energy phenomena, such as
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bound-state properties, within QCD impossible. However,
the progress of lattice QCD may provide us with a way
to calculate numerically the mass and other properties of
such objects.

In the low- and intermediate-energy regime phe-
nomenological and QCD-inspired effective theories have
been developed, e.g. the bag model, the Skyrme model and
the constituent-quark model, which have been reasonably
successful to describe the mass spectrum of most of the
known mesons (qq̄) and baryons (qqq). The possibility to
form other color singlet states, such as dibaryons (qqqqqq),
baryonium (qqq̄q̄), pentaquarks (qqqqq̄), hybrids (qq̄g) and
glueballs (gg, ggg) was soon recognized and sparked in-
tense theoretical and experimental activities.

Jaffe [1] predicted a bound dibaryonic state made from
two up (u), down (d) and strange (s) quarks each, us-
ing the MIT bag model. This H-particle with a calcu-
lated mass below the ΛΛ threshold was expected to de-
cay weakly with a narrow width. These calculations were
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extended to the non-strange quark sector [2–4]. Here, rel-
ative momenta of two colored cluster were introduced,
such that the angular-momentum barrier hinders the de-
cay, which requires the rearrangement in two color-neutral
three-quark clusters [5,6]. Like for baryons, a whole spec-
trum of dibaryonic states was predicted. However, only
the lowest-lying states were hoped to have a decay width
small enough to be observed experimentally, although all
states were predicted to be above the inelastic (NNπ)
threshold.

The mass spectrum of dibaryonic states have also
been obtained in a number of phenomenological or QCD-
inspired models, e.g. the constituent-quark [7,8], diquark-
cluster [9] and the Skyrme model [10,11]. The prediction
of the masses scattered considerably, but clustered in the
2.1–2.4GeV range for the lowest states. All model param-
eters must be fixed by the properties of the known mesons
and baryons. Since it is questionable if these parameters
are unchanged in a six-quark system, the theoretical un-
certainties of all predictions are large. Another problem is,
that most dibaryonic states have open decay channels [12,
13]. The coupling of the decay-channel to the six-quark
system may alter the energy and width of the states con-
siderably.

Calculations within the cloudy-bag model where the
internal quark wave functions in the bag are coupled at
the bag radius to external N∆, NN∗ and ∆∆ channels,
modeled by meson-exchange potentials, have led to pre-
dictions [14–19] of the lowest dibaryonic states at higher
energies of about 2.7–2.8GeV.

In the 1980s several experiments were devoted to
search for evidence of dibaryonic states (see refs. [20–26]
for a review). Despite a large effort none of the numerous
positive claims survived experimental verification. Espe-
cially, precise excitation functions of the differential cross-
section in the kinetic energy range 500–1200MeV [27]
and the analyzing power in the kinetic energy range 655–
1017MeV [28] measured at SATURNE II by Garçon et al.
did not show any evidence for narrow resonances. Candi-
dates reported in refs. [29,30] and analyzed in [31] were
not verified experimentally by Beurtey et al. [32]. Also
candidates reported in refs. [33,34] were not verified in
later remeasurements [35]. The same holds true for candi-
dates reported in refs. [36,37]. The candidates reported in
refs. [38–40] have not yet been confirmed by other mea-
surements.

Precise and internally consistent excitation functions
of the elastic proton-proton scattering, i.e. differential
cross-sections [41,42], analyzing powers [43,44] and spin
correlation parameters [45,46], have recently been mea-
sured by the EDDA Collaboration in the kinetic energy
range from 0.45 to 2.5GeV. There is no evidence for nar-
row resonances in those data. The aim of the present
paper is to deduce upper limits on resonance contribu-
tions to proton-proton elastic scattering in the c.m. mass
range 2.05–2.85GeV/c2 using the data of the EDDA ex-
periment.

2 Dibaryons

Loosely speaking, all states with baryon number equal to
two can be termed dibaryon. However, in the context of
this paper we will consider only states as dibaryons which
cannot be explained trivially as a bound state or a reso-
nance in a system of two baryons, like the deuteron. Good
candidates would be resonances with widths considerably
smaller than the typical width of baryon resonances, i.e.
smaller than about 100MeV.

The structures in spin-dependent total cross-sections
∆σT and ∆σL of pp elastic scattering at the ZGS [47,48]
were soon interpreted as resonances in the 1D2 and 3F3

partial waves [49–51]. Modern phase shift analysis show
counter-clockwise rotation in the Argand plot with widths
of 80–150MeV at energies of 2170MeV (2250MeV) for
the 1D2 (3F3) partial waves [52,53]. However, these struc-
tures can easily be understood by the opening of the N∆
inelastic channel [54], since they appear in the lowest N∆
partial waves at approximately the N∆ mass. This inter-
pretation is also supported by coupled-channel [15,55,56]
and Fadeev [57] calculations, so that these structures are
widely accepted as dibaryons in the trivial sense.

Resonances with widths considerably below 100MeV
would not be easily explained by conventional models, and
would be good candidates for exotic dibaryonic states.

3 Determination of upper limits of resonance
contributions

Recent measurements of high-precision excitation func-
tions of the elastic proton-proton scattering cross-
sections [41,42], analyzing powers [43,44] and spin corre-
lation parameters [45,46] in the energy range from 0.45
to 2.5GeV kinetic energy have shown no evidence for
energy-dependent structures within the experimental er-
rors. This observation can be used to set upper limits
quantitatively on the coupling of narrow resonances to the
elastic channel in proton-proton elastic scattering. In this
context we consider resonances to be “narrow”, when the
width is considerably smaller than that of the lowest ex-
cited baryons, i.e. total widths not larger than 100MeV.
The analysis we have performed attempts to provide an
unbiased statistical test on the compatibility of resonance
contributions with the data of the EDDA experiment at
COSY [41–46]. At the beginning of this study the cross-
section and analyzing-power data were used [58]. But it
turned out that the sensitivity of the analyzing-power data
was very low. Also, the EDDA data on excitation func-
tions of the spin correlation parameters ANN , ASS and
ASL [46] were not used. This is due to the fact that those
data have a rather low statistical accuracy when compared
to the cross-section data. Therefore, the upper limits of the
present study are based solely on the very precise excita-
tion functions of the differential cross-sections [42]. The
method we employed is described in the next sections.
The upper limits for the elastic width of resonances in the
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partial waves 1S0,
1D2,

3P0,
3P1, and

3F3 with c.m. en-
ergies between 2.05 and 2.85GeV and total widths in the
10–100MeV range are presented in sect. 4.

3.1 Overview

The aim of this paper is to construct an unbiased statisti-
cal test for the compatibility of an isolated resonance in a
single partial wave with the experimental excitation func-
tions. To achieve this, we need to distinguish the contri-
butions of the resonance from that of non-resonant scat-
tering. Unfortunately, to date no theory or even model
exists which describes nucleon-nucleon elastic scattering
far above the inelastic threshold, i.e. 300MeV, quantita-
tively. Only qualitative agreement has been reached within
meson-exchange models for energies below 1.0GeV [59].
Therefore, we rely on energy-dependent phase shifts [60,
61] to account for the non-resonant scattering contribu-
tion, where the parameterization of the energy dependence
is chosen not to allow for rapid changes of partial-wave
amplitudes as they arise from resonances. To this end, an
energy-dependent phase shift analysis (PSA), tailored to
give an optimal fit to the test data set, serves as the null
hypothesis. When we want to test the compatibility of an
assumed resonant contribution in the partial wave 2S+1LJ
with given energy, width and partial elastic width, we
add the resulting resonant amplitude to the corresponding
partial-wave amplitude. If we compared the result, i.e. the
prediction of PSA plus the resonance, to the experimental
data the test would be biased in the following sense: the
non-resonant contribution was fitted to the data under the
assumption that no resonance contributes. This bias can
be removed if we now refit all phase parameters with the
resonance included in the appropriate partial-wave ampli-
tude to obtain a modified solution (PSA′). The result of
this modified PSA′ together with the resonance is the best
fit to the data, with the assumption that the resonance
exists and its comparison with the test data set allows to
test the resonance hypothesis.

In fig. 1 an example is shown, where the dotted line
represents the null hypothesis (PSA), the solid line is the
result for the resonance hypothesis. The dashed line shows
the contribution from the modified PSA′ representing the
non-resonant scattering in the presence of the isolated res-
onance. The PSA′ moves away from the data to best ac-
commodate the resonance, whose parameters remain fixed
when the phase shifts of PSA′ are adjusted. Note, that
the fit will be performed on several excitation functions
at different angles simultaneously. In fig. 2 the effect of
the relative phase φR between resonant and non-resonant
amplitudes is shown for a 1S0-resonance at 2.7GeV with
a width of 50MeV. The figure shows the Argand diagram
(left) and differential cross-sections (right) for four differ-
ent values of the phase φR.

Finally, the comparison of the experimental data and
the null and resonance hypothesis are subject to a statisti-
cal analysis. Based on a χ2-test, the confidence level (CL)
for excluding the resonant with the chosen parameters is
determined.
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Fig. 1. Example of an excitation function from [42] in com-
parison to a best-fit PSA without (dotted line) and with (solid
line) a resonance in the 1S0 partial wave at WR = 2.4GeV,
with a total width of 50MeV and a partial elastic width of
2.8MeV. The non-resonant part of the latter is shown as the
dashed line. The presence of this resonance is excluded with
99% CL, based on 28 excitation functions at different scatter-
ing angles.
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Fig. 2. Argand diagram (left) and differential cross-sections
(right), assuming a 1S0-resonance at 2.7GeV with a width of
50MeV for four different values of the phase φR (offset to the
right for φR 6= 0).

The different steps of the analysis and the formalism
employed are described in the following sections.

3.2 Formalism

Elastic scattering of two identical spin-1/2 particles can
be described by 5 complex amplitudes [62,63], when basic
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Table 1. Partial waves for J = 0, . . . , 4 in nucleon-nucleon scattering using the notation 2S+1LJ for a given isospin I.

I L Jπ

0+ 0− 1+ 1− 2+ 2− 3+ 3− 4+ 4−

J − 1 – – 3S1 – – – 3D3 – – –
0 J – – – 1P1

3D2 – – 1F3
3G4 –

J + 1 – – 3D1 – – – 3G3 – – –

J − 1 – – – – – 3P2 – – – 3F4

1 J 1S0 – – 3P1
1D2 – – 3F3

1G4 –
J + 1 – 3P0 – – – 3F2 – – – 3H4

invariance properties (parity, time reversal, Pauli prin-
ciple) of the strong interaction are taken into account.
A number of different choices for these amplitudes have
appeared in the literature [53,64,65]. Here, we will use
the amplitudes H1, . . . , H5 introduced by Arndt, Roper,
Bryan, Clark, VerWest and Signell [53].

These amplitudes can be expanded in partial waves
2S+1LJ , according to the relative orbital angular mo-
mentum L, total spin S and total angular momentum
J = |L − S|, . . . , |L + S| of the two-proton wave func-
tion. To satisfy the Pauli principle the total wave function
must be antisymmetric with respect to the particle inter-
change, so that only partial waves with (−1)L+S+1 equal
to −1 contribute to the proton-proton elastic scattering.
In table 1 the lowest partial waves in NN scattering are
listed.

Since total angular momentum and parity —given by
π = (−1)L— are conserved, only partial waves with the
same Jπ can couple, a condition only satisfied for spin-
triplet partial waves with L = J±1. If we restrict ourselves
to uncoupled partial waves 2S+1Lj the corresponding S-
matrix element Sj is simply a complex number and can
be parameterized by the corresponding phase shift δj viz

Sj = e2iδj . (1)

Below the pion production threshold, unitarity requires
|Sj | = 1 and δj to be real, however at higher energies
the open inelastic channels make |Sj | ≤ 1 and thus phase
shifts become complex.

Let us assume an isolated resonance with angular mo-
mentum j, resonance energyWR and total width Γtot cou-
pled to the NN elastic channel. When we use Sj,nr to de-
scribe the non-resonant scattering the S-matrix element
is given by [66]

Sj = Sj,nr − i
e2i(Re δj+φR+φc)Γel

W −WR + iΓtot/2
. (2)

where W =
√
s is the total energy of the pp c.m. system,

Γel the partial width for the coupling of the resonance to
the elastic channel, φR ∈ [0, π[ an unknown, arbitrary rel-
ative phase of the resonant and non-resonant amplitudes,
and φc the Coulomb phase, since the phase shifts δj are
considered as bare nuclear phase shifts with the Coulomb
interaction taken out.

The corresponding T -matrix element is then given by

Tj =
Sj − 1

2i
= Tj,nr −

1

2
· e

2i(Re δj+φR+φc)Γel

W −WR + iΓtot/2
︸ ︷︷ ︸

Tj,r

. (3)

Taking the partial-wave expansion of the amplitudes
H1,...,5 from ref. [53] we obtain for a resonance in a spin-
singlet partial wave a modified amplitude H1

H1 = H1,nr − (2j + 1) Tj,rPj (4)

and for a resonance in an uncoupled triplet partial wave
H2 and H3 are modified:

H2 = H2,nr −
{
(2j + 1) Pj − P 1

j cot θc.m.
}
Tj,r ,

H3 = H3,nr −
P 1
j

sin θc.m.
Tj,r ,

(5)

where Pj (P
1
j ) are the (associated) Legendre polynomials

in cos θc.m..
The resonant excursion observed in a specific pp

elastic-scattering observable is obtained mainly from the
interference term of the resonant and non-resonant ampli-
tudes. Here, we will only discuss unpolarized differential
cross-sections and analyzing powers, given by

dσ

dΩc.m.
=

1

k2

(
5∑

i=1

|Hi|2 + |H4|2
)

,

AN
dσ

dΩc.m.
=

2

k2
Im [(H3 +H5)H

∗

4 ] ,

(6)

with k being the wave number, i.e. the proton c.m. mo-
mentum divided by h̄ (k = pc.m./h̄). For a resonance in a
spin-singlet partial wave, for example, we obtain

dσ

dΩc.m.
=

dσ

dΩc.m.

∣
∣
∣
∣
nr

− 2

k2
(2j + 1) Pj Re

[
H∗

1,nr Tj,r
]
, (7)

where the resonant excursion will have a characteristic
dependence on θc.m. through the corresponding Legendre
polynomials. Note that expected excursions are small, so
that we have dropped the term quadratic in Tj,r. It is
straightforward to obtain similar expressions for other ob-
servables. It should be emphasized that the resonance ex-
cursion of a single isolated narrow resonance is propor-
tional to the elasticity ηel=Γel/Γtot (see eqs. (3)-(7)).
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3.3 Experimental data

The analysis presented here is based on excitation func-
tions of the unpolarized differential cross-section [42] ob-
tained by the EDDA experiment at COSY. Of the cited
errors only those are taken into account which give rise
to point-to-point fluctuations in angular distributions or
excitation functions. Other systematic uncertainties are
smoothly varying with energy or scattering angle and will
not give rise to narrow structures in excitation functions.

In principle, the excitation functions for the analyz-
ing power [43,44] and spin correlation parameter [46]
of the same experiment can also be used. However, the
analyzing-power data give little additional constraints on
resonant contribution, with the exception of wider reso-
nances in spin-triplet partial waves. The excitation func-
tions of the spin correlation parameters ANN , ASS and
ASL [46] were not used at all because those data have
a rather low statistical accuracy when compared to the
cross-section data.

Only the excitation functions of the unpolarized differ-
ential cross-section [42] are used to test the compatibility
with an assumed resonance, and we will call this data the
test data set in the following sections.

3.4 Effective resolution function

EDDA is an internal target experiment that measures the
excitation functions quasi-continuously during the beam
acceleration of the cooler synchrotron COSY. The momen-
tum resolution of the internal proton beam corresponds
to a momentum spread of about 0.4MeV/c yielding a rms
width of about 0.13MeV in the pp c.m. system. However,
the effective resolution is determined by the momentum
bin width. The data are recorded during the beam accel-
eration in time bins of 2.5ms. The speed of the linear mo-
mentum ramp is 1.15GeV/c. Therefore, the corresponding
width of the elementary momentum bin is 2.875MeV/c.
But, in order to increase statistics the data are binned in
bins with a width of ∆p = 25MeV/c. Thus, the momen-
tum resolution is determined by a momentum width of
25MeV/c. The corresponding energy width ∆W of the pp
c.m. system is about 8.5MeV (8.3MeV at W = 2.1GeV,
8.8MeV at W = 2.4GeV and 8.2MeV at W = 2.7GeV).
This c.m. energy width can be taken into account by fold-
ing the theoretical excitation functions with a rectangu-
lar resolution function corresponding to a momentum bin
width of 25MeV/c before comparing with the data. How-
ever, in order to save computer time the effect of folding
was taken into account a posteriori by estimating a cor-
rection factor for the tests of the narrowest resonances,
i.e. for Γtot = 10MeV and Γtot = 20MeV. This correc-
tion factor never exceeds 1.2. For larger total widths the
effect of folding is negligible.

3.5 Phase shift analysis

To model the contribution from non-resonant scattering
we use a parameterization in terms of phase shifts as pro-

vided by the VPI/GWU PSA solution SP00 [61]. In order
to achieve an optimal fit to the unpolarized differential
cross-section data of the EDDA experiment at COSY [42],
we modified the experimental data base to exclude all un-
polarized differential cross-section data of other experi-
ments in the same energy range and refitted the phase
shift parameters. This ensures an optimum parametriza-
tion of the EDDA data and thus a low χ2 for the non-
resonant hypothesis. That means, all spin-dependent data
(including spin-dependent EDDA at COSY results) re-
mained and only the unpolarized differential cross-section
data from other experiments were removed. The norms
of the dσ/dΩ data of EDDA at COSY were fixed to 1.0.
The spin-dependent data were normalized in accordance
with the solution SP00 of [61]. The same data base was
also used when a resonance was added to a certain partial-
wave amplitude and the phase shift parameters were re-
fitted to obtain the best representation of the data for the
resonance hypothesis. The norms of the dσ/dΩ data of
EDDA at COSY remained the same for the non-resonant
PSA as well as the resonant PSA′ solution.

3.6 χ2-test

The compatibility of the experimental data with a hy-
pothesis is subject to a χ2-test. We only include the data
measured within ±Γtot around the energy WR of the res-
onance. Including more data, e.g. within ±2Γtot would
simply dilute the information, since here the resonant ex-
cursion is already small.

The χ2 obtained from the comparison of the hypoth-
esis to the data is subject to a standard χ2-test [67]. As-
suming the χ2 is statistically distributed according to a
χ2-distribution fn with the appropriate number n of de-
grees of freedom, we can calculate the confidence level
(CL) with which we can support or falsify the hypothe-
sis. Assuming the hypothesis were true, the probability to
obtain a larger χ2 than the observed one in an infinite
repetition of the experiment is given by

P =

∫
∞

χ2

dufn(u). (8)

If P is very small either the hypothesis is wrong or the
current measurement is due to a very unlikely statistical
fluctuation. The CL for excluding the hypothesis tested
is given by 1 − P , i.e. for a confidence level of 99% the
probability to observe a larger χ2 when repeating the mea-
surement is only 1%.

We use the number of data points within the c.m. total
energy intervalWR±Γtot as the number of degrees of free-
dom. Thus, we neglect the degrees of freedom introduced
by the PSA modeling the non-resonant background. This
PSA contains roughly 100 parameters, but these are ad-
justed by using the complete data base of about 20000
data points and cannot be considered as free parameters.
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Table 2. Upper limits (99% CL) on ηel = Γel/Γtot based on the differential cross-section data of [42].

Γtot = 10MeV Γtot = 20MeV Γtot = 30MeV
1S0

1D2
3P0

3P1
3F3

1S0
1D2

3P0
3P1

3F3
1S0

1D2
3P0

3P1
3F3

WR ηel,max ηel,max ηel,max

GeV % % % % % % % % % % % % % % %
2.05 7.2 3.8 9.3 2.0 3.2 7.6 2.7 9.2 1.9 2.8 7.3 2.6 8.9 1.9 2.7
2.10 6.8 5.7 7.6 2.1 4.9 4.3 5.0 5.4 1.2 3.7 4.0 5.0 5.0 1.2 3.5
2.15 16.2 8.5 12.7 4.8 10.4 11.4 6.3 9.4 3.1 7.3 10.8 10.0 8.5 2.9 8.3
2.20 5.8 6.7 9.8 1.8 7.9 5.9 4.8 7.7 1.8 6.0 6.5 5.3 8.8 2.1 7.2
2.25 4.5 3.8 6.7 1.7 5.4 3.9 3.4 6.3 1.4 5.7 4.3 3.8 7.5 1.4 6.5
2.30 11.5 6.0 12.1 4.2 7.8 8.6 4.6 9.2 3.2 6.3 8.3 4.3 8.9 3.1 6.2
2.35 6.8 4.0 7.7 2.8 6.8 5.4 2.8 5.9 2.3 5.3 6.4 3.0 6.9 2.7 5.6
2.40 6.2 3.4 6.7 2.5 5.2 4.9 2.8 5.4 2.2 4.4 4.9 2.7 5.6 2.4 4.8
2.45 7.0 4.3 8.6 3.3 7.7 5.6 3.2 6.1 2.6 5.8 5.1 2.9 5.6 2.6 5.3
2.50 7.8 4.9 8.1 2.9 9.0 5.0 3.0 5.7 2.1 6.0 4.5 2.8 5.1 1.9 5.1
2.55 8.0 5.0 7.3 2.9 7.4 5.5 3.2 5.5 2.1 4.9 4.9 3.2 5.0 1.9 4.5
2.60 8.3 5.5 6.9 2.9 5.6 6.0 3.7 6.2 2.2 4.6 5.8 3.6 6.2 2.1 4.3
2.65 7.9 4.5 8.2 3.2 3.6 6.2 3.6 6.2 2.4 2.8 5.6 3.7 6.1 2.2 2.9
2.70 9.5 5.0 7.4 3.3 3.9 7.5 3.3 6.5 2.7 3.1 7.2 3.5 6.5 2.5 3.0
2.75 10.5 5.0 7.3 3.6 3.2 8.8 4.8 6.4 3.0 2.8 8.5 4.7 5.6 2.9 2.8
2.80 25.0 10.0 9.2 5.4 3.7 15.2 6.2 7.3 3.8 2.8 13.2 5.6 6.4 3.9 2.7
2.85 11.2 5.1 8.0 5.3 3.7 12.7 6.1 9.5 6.7 4.3 11.6 6.8 12.1 9.0 5.7

Γtot= 40MeV Γtot= 50MeV Γtot= 60MeV
1S0

1D2
3P0

3P1
3F3

1S0
1D2

3P0
3P1

3F3
1S0

1D2
3P0

3P1
3F3

WR ηel,max ηel,max ηel,max

GeV % % % % % % % % % % % % % % %
2.10 4.4 5.5 5.6 1.2 3.2 4.7 5.2 6.7 1.2 3.1 4.8 4.5 7.2 1.4 2.9
2.15 11.5 10.2 9.6 3.0 9.6 11.9 10.6 10.1 3.2 10.0 12.6 10.5 9.8 3.6 12.1
2.20 8.2 6.2 9.5 2.4 9.1 8.9 7.3 10.8 2.9 15.4 10.4 8.2 12.5 3.5 18.2
2.25 5.2 4.7 9.8 1.7 8.1 5.3 5.0 10.8 1.7 9.0 5.2 5.6 11.3 1.8 10.2
2.30 9.1 4.5 9.4 3.2 6.6 9.7 4.6 10.1 3.5 7.0 10.2 4.7 10.7 3.2 7.2
2.35 7.5 3.3 8.3 5.4 5.9 8.6 3.5 9.3 5.7 6.3 10.5 3.9 11.1 6.5 6.8
2.40 5.3 2.6 5.8 2.5 4.6 5.5 2.8 6.4 2.9 4.8 6.7 3.0 14.5 6.6 5.1
2.45 5.2 3.0 5.9 3.0 5.2 5.6 3.1 6.7 6.8 5.4 5.7 3.1 7.5 8.4 5.3
2.50 4.3 2.9 5.0 1.9 4.9 4.6 3.1 5.5 2.1 5.0 5.1 3.7 6.3 2.7 5.3
2.55 4.8 3.2 5.0 1.9 4.3 5.2 3.5 5.5 2.1 4.4 5.3 3.7 5.6 2.1 4.4
2.60 6.0 3.7 6.5 2.2 4.3 6.3 4.1 7.0 2.4 4.7 6.7 4.3 7.5 2.5 4.7
2.65 5.7 3.9 5.9 2.2 3.0 5.8 4.7 6.0 2.2 3.1 5.8 4.7 6.2 2.3 3.1
2.70 7.1 3.8 6.3 2.6 3.1 7.2 3.8 6.1 2.8 3.1 7.4 4.2 6.3 2.9 3.2
2.75 8.5 4.5 5.6 3.2 3.1 8.7 4.9 6.1 3.4 3.4 9.3 5.2 6.6 3.7 3.5
2.80 12.8 5.4 6.3 4.3 2.7 13.6 5.5 6.8 4.7 3.0 13.9 5.7 7.6 5.5 3.3

Γtot= 70MeV Γtot= 80MeV Γtot= 90MeV
1S0

1D2
3P0

3P1
3F3

1S0
1D2

3P0
3P1

3F3
1S0

1D2
3P0

3P1
3F3

WR ηel,max ηel,max ηel,max

GeV % % % % % % % % % % % % % % %
2.15 12.7 9.8 10.6 3.7 10.0 12.6 12.6 11.0 3.7 8.8
2.20 12.3 9.8 13.6 4.0 18.9 14.8 11.7 15.0 4.7 22.8 16.8 22.1 17.0 5.4 22.8
2.25 5.3 5.9 10.5 1.9 11.0 5.4 6.4 10.7 2.2 11.8 5.9 6.8 12.3 2.4 22.0
2.30 11.4 5.1 11.6 3.3 8.2 13.1 5.5 12.9 3.6 10.3 14.4 5.9 14.0 3.8 9.9
2.35 12.6 4.2 15.0 6.8 7.1 14.0 4.4 13.3 7.0 7.3 16.8 4.9 14.5 7.3 8.1
2.40 7.5 3.1 17.0 6.8 5.4 9.4 3.3 17.2 6.9 5.9 10.6 3.8 19.4 7.5 6.6
2.45 6.0 3.3 16.3 8.6 5.6 7.1 3.4 16.4 8.7 5.8 11.0 4.6 16.5 8.8 6.2
2.50 5.7 4.0 7.4 10.3 5.6 6.1 3.7 8.5 8.5 5.8 6.3 4.5 10.0 8.4 6.0
2.55 5.5 4.0 6.3 2.2 4.7 5.9 4.3 7.0 2.4 4.9 6.3 4.6 7.7 8.1 5.2
2.60 6.7 5.4 8.0 2.5 4.7 6.9 6.0 8.2 2.5 4.7 7.2 6.2 8.9 2.6 4.8
2.65 6.2 4.8 6.2 2.3 3.2 6.8 5.1 6.9 2.5 3.5 7.2 5.5 7.3 2.6 3.8
2.70 7.6 4.6 6.4 3.0 3.6 8.3 4.8 7.0 3.4 3.9 9.5 5.0 7.2 4.0 4.4
2.75 10.3 5.5 7.1 4.2 3.7 11.1 6.0 7.7 4.7 4.2 12.0 6.0 8.3 5.1 4.4
2.80 14.9 6.0 8.3 6.2 3.7
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Table 3. Upper limits (99% CL) on ηel for Γtot = 100MeV as
in table 2.

Γtot = 100MeV
1S0

1D2
3P0

3P1
3F3

WR ηel,max

GeV % % % % %
2.20 18.9 16.4 18.2 5.8 22.6
2.25 6.8 7.6 12.7 2.5 17.7
2.30 14.0 6.2 14.9 3.5 23.8
2.35 19.7 5.2 16.1 7.5 9.3
2.40 13.1 6.4 20.7 7.9 7.2
2.45 11.5 4.9 16.7 8.9 6.4
2.50 6.7 4.0 16.7 8.3 6.3
2.55 6.8 5.5 8.9 10.4 5.7
2.60 7.2 7.3 9.2 2.7 4.8
2.65 7.4 5.9 7.8 2.8 4.1
2.70 10.7 5.8 8.0 5.8 5.1
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Fig. 3. Excitation functions of pp elastic scattering cross-
sections [42] in comparison to a PSA representing the null hy-
pothesis (dotted line), a PSA best reproducing the world data
base when a resonance in the 1S0 partial wave with parameters
as given in the upper left box (resonance position WR, total
width Γtot, resonance phase φR, elasticity ηel) is added (solid
(dashed) line: PSA′ with (without) adding the resonance). The
scale of dσ/dΩ is linear, the zero is suppressed.
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Fig. 4. The same as fig. 3, but for a resonance in the 1D2

partial wave.

4 Results

The determination of upper limits of resonance contribu-
tions was performed for all uncoupled partial waves with
J ≤ 3 and isospin I = 1, i.e. 1S0,

1D2,
3P0,

3P1 and
3F3. These partial waves cover the most important pre-
dictions for dibaryonic resonances. Upper limits on the
elasticity ηel = Γel/Γtot are deduced from the differential
cross-section data of [42]. For this systematic study the
following parameter space was chosen: The resonance en-
ergyWR was varied between 2.05 and 2.85GeV in 50MeV
steps, the total width Γtot between 10 and 100MeV in
10MeV steps and the relative phase φR between 0◦ and
180◦ in 10◦ steps. The limits in WR correspond to the en-
ergy range of the EDDA experiment. The lower limit of
the total width Γtot is determined by the finite momentum
bin width of 25MeV/c of the EDDA data corresponding
to a c.m. energy width of about 8.5MeV. The upper limit
of the total width is a consequence of the applicability of
the method.

Typical results are shown in figs. 3-5 for the analysis of
the partial waves 1S0,

1D2 and 3F3. Figure 6 shows upper
limits (99% CL) on ηel = Γel/Γtot for the lowest uncoupled
partial waves as a function the resonance energy WR for
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Fig. 5. The same as fig. 3, but for a resonance in the 3F3

partial wave.

three different total widths Γtot. In tables 2 and 3 the
upper limits (99% CL) on ηel = Γel/Γtot are listed as a
function of the resonance energy WR and the total width
Γtot.

The main results can be summarized as follows:

– Excepting some statistical fluctuations the upper lim-
its of ηel = Γel/Γtot for narrow resonances (Γtot ≤
50MeV) show a rather smooth energy dependence.
The upper limits are typically about 4–8% (1S0), 3–5%
(1D2), 5–8% (3P0), 2–3% (3P1) and 3–6% (3F3).

– The upper limits of ηel = Γel/Γtot for Γtot > 50MeV
are systematically larger.

– For Γtot > 50MeV the upper limits of ηel = Γel/Γtot

are relatively large for 1S0 near 2.20 and 2.35GeV, 3P0

near 2.20 and 2.40GeV, 1D2 near 2.15GeV and 3F3

near 2.25GeV.

5 Discussion

Though many predictions of exotic dibaryon resonances
exist with specification of the resonance energy WR only
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Fig. 6. Upper limits (99% CL) on ηel = Γel/Γtot for the lowest
uncoupled partial waves as a function the resonance energyWR

for three different total widths Γtot based on the cross-section
data of [42].

few papers predict total and partial widths as well. No-
table exceptions are studies of isospin I = 0 and I = 1
dibaryons by Lomon and coworkers [14–16] and studies of
dibaryons in the strangeness sector S = −1 by Aerts and
Dover [5,6]. Lomon and coworkers predict the lowest I =
1, 1S0 dibaryon at WR = 2.71GeV with Γtot = 50MeV,
Γel = 5MeV and ηel = 10%. Such a resonance is not
probable, the upper limit of elasticity (99% CL) for a 1S0-
resonance at WR = 2.71GeV is ηel = 7.2% (see table 2).
The predicted lowest 1D2 dibaryon at WR = 2.88GeV
with Γtot = 100MeV, Γel = 5MeV and ηel = 5% is be-
yond the range of the present study.

It is interesting to note that in the energy regions of the
structures observed in spin-dependent total cross-sections
of pp elastic scattering at 2170MeV and 2250MeV [47,48]
the upper limits of ηel = Γel/Γtot are relatively large for
1D2 and 3F3 and Γtot > 50MeV (see sect. 2).

It should be mentioned that our results are compat-
ible with a previous study of excitation functions of pp
elastic scattering analyzing power in the lab energy range
655–1017MeV [28]. In this paper upper limits of the elas-
ticity ηel were deduced for two resonances, 3P1, WR =
2192MeV, Γtot = 25MeV and 3F3, WR = 2240MeV,
Γtot = 16MeV, to be 2% and 11%, respectively. In [28]
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it was also noted that the differential cross-section data
(of the type that SATURNE [27] and EDDA [41,42] ob-
tained) provide a more significant constraint for such an
analysis than the analyzing-power data.

A previous internal target experiment at KEK [29,30]
observed two narrow structures in the excitation func-
tion of the analyzing power AN at a kinetic energy near
632MeV corresponding to

√
s = 2.17GeV. The authors

attempted to interpret the observed anomaly by the effect
of a narrow resonance. But the anomalies were not seen in
a SATURNE experiment by Beurtey et al. [32]. Also the
EDDA experiment [44] did not confirm the results of the
KEK experiment.

In a systematic search for narrow resonances one
should also include all measured spin observables. Espe-
cially, the spin correlation parameters ANN and ASS ex-
hibit larger sensitivities to a narrow resonance than the
unpolarized differential cross-section. However, these ob-
servables have not been measured with sufficient accuracy.
Therefore, we omit the inclusion of the spin correlation pa-
rameters. In this context, we mention an experiment [33]
where a narrow anomaly has been observed in the exci-
tation function of ANN around 2.11GeV kinetic energy
at Θc.m. = 90◦. However, this result was not confirmed in
later remeasurements [35].

The upper limits on ηel of the present study do not
exclude completely the possible existence of exotic nar-
row resonances in the pp system. Narrow resonances with
elasticities below the upper limits given in tables 2 and 3
are still possible.

6 Summary

Upper limits of resonance contributions to proton-
proton elastic scattering in the c.m. mass range 2.05–
2.85GeV/c2 have been deduced on the basis of recent
high-precision data of the internal target experiment
EDDA at COSY [42]. In order to test the resonance hy-
pothesis a Breit-Wigner term describing single isolated
narrow resonances is introduced into the S-matrix ele-
ment. The analysis provides an unbiased statistical test on
the compatibility of resonance contributions with the mea-
sured excitation functions of differential cross-sections. We
use a χ2-test in order to deduce upper limits on the elas-
ticity ηel = Γel/Γtot of resonances in the partial waves 1S0,
1D2,

3P0,
3P1, and

3F3 with a 99% confidence level.
For narrow resonances (Γtot ≤ 50MeV) the upper lim-

its of ηel = Γel/Γtot are typically about 4–8% (1S0), 3–5%
(1D2), 5–8% (3P0), 2–3% (3P1) and 3–6% (3F3). For res-
onances with 50MeV < Γtot < 100MeV the upper limits
of ηel are systematically larger.

It is interesting to note that many dibaryonic states
have been predicted in the mass range 2.05–2.85GeV. Res-
onances with total widths below 100MeV would be good
candidates for exotic dibaryonic states. But narrow reso-
nances have not been observed. This might be due to the
fact that such narrow states do not exist at all. Another
possibility is that the elasticities of such resonances are
very small, i.e. below the upper limits listed in tables 2

and 3. In this context it should be mentioned that the
1S0 dibaryon resonance predicted by Lomon et al. [15] at
WR = 2.71GeV with Γtot = 50MeV, Γel = 5MeV and
ηel = 10% is not probable. Summarizing, exotic narrow
resonances in the pp system with elasticities above the
upper limits given in tables 2 and 3 are excluded by the
present study.
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